资源类型

期刊论文 22

年份

2023 1

2022 1

2021 2

2020 1

2019 2

2018 1

2016 2

2015 1

2014 2

2012 2

2011 4

2009 2

2007 1

展开 ︾

关键词

γ-氨基丁酸A型受体 1

单萜 1

烟碱型乙酰胆碱受体 1

精油 1

芳樟醇 1

展开 ︾

检索范围:

排序: 展示方式:

Polymerization of methyl methacrylate catalyzed by mono-/bis-salicylaldiminato nickel(II) complexes and

Jihong LU, Danfeng ZHANG, Qian CHEN, Buwei YU

《化学科学与工程前沿(英文)》 2011年 第5卷 第1期   页码 19-25 doi: 10.1007/s11705-010-0546-1

摘要: Two types of salicylaldiminato-based nickel complexes, mono-ligated Ni(II) complexes ([O-C H - - C(H)=N-Ar]Ni(PPh )(Ph) ( ), [O-(3,5-Br )C H - -C(H)=N-Ar]Ni(PPh )(Ph) ( ), [O-(3- -Bu)C H - -C(H)=N-Ar]Ni(PPh )(Ph) ( )) and bis-ligated Ni(II) complexes ([O-(3,5-Br )C H - -C(H)=N-Ar] Ni ( ), [O-(3,5-Br )C H - -C(H)=N-2-C H (PhO)] Ni ( ), Ar=2,6-C H ( -Pr) ) were synthesized and characterized by Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance (NMR), mass spectrography (MS) and elemental analysis (EA). In the presence of methylaluminoxane (MAO) as cocatalyst, all the nickel complexes exhibited high activities for the polymerization of methyl methacrylate (MMA) and syndiotactic-rich poly(methyl methacrylate) (PMMA) was obtained. The complexes with less bulky substituents on salicylaldiminato framework possessed higher activities, while with the same salicylaldiminato, the mono-ligated nickel complexes showed higher catalytic activity than bis-ligated ones.

关键词: late transition metal catalyst     methyl methacrylate     polymerization     salicylaldiminato nickel complexes     methylaluminoxane     syndiotactic structure    

Mayenite supported perovskite monoliths for catalytic combustion of methyl methacrylate

Zekai ZHANG, Zhijian KONG, Huayan LIU, Yinfei CHEN

《化学科学与工程前沿(英文)》 2014年 第8卷 第1期   页码 87-94 doi: 10.1007/s11705-014-1410-5

摘要: To improve their thermal stability, La Sr MnO cordierite monoliths are washcoated with mayenite, which is a novel Al-based material with the crystal structure of 12MO·7Al O (M= Ca, Sr). The monoliths are characterized by means of nitrogen adsorption/desorption, scanning electron microscopy, and X-ray diffraction. Catalytic performances of the monoliths are tested for methyl methacrylate combustion. The results show that mayenite obviously improves both the physic-chemical properties and the catalytic performance of the monoliths. Because mayenite improves the dispersity of La Sr MnO and also prevents the interaction between La Sr MnO and cordierite or -Al O , both crystal structure and surface morphology of La Sr MnO phase can thereby be stable on the mayenite surface even at high temperature up to 1050 oC. Under the given reaction conditions, La Sr MnO monolith washcoated with 12SrO·7Al O shows the best catalytic activity for methyl methacrylate combustion among all the tested monoliths.

关键词: mayenite     perovskite     catalytic combustion     methyl methacrylate     monolith    

Morphological and mechanical characterization of a PMMA/CdS nanocomposite

Vishal MATHUR, Manasvi DIXIT, K.S. RATHORE, N. S. SAXENA, K.B. SHARMA

《化学科学与工程前沿(英文)》 2011年 第5卷 第2期   页码 258-263 doi: 10.1007/s11705-010-1014-7

摘要: Thick film of poly(methyl methacrylate) (PMMA)/CdS nanocomposite have been synthesized by the solution casting process. The nanostructure of the CdS particles has been ascertained through the small angle X-ray scattering (SAXS) technique. The surface morphological characterization of the PMMA/CdS nanocomposite has been done through scanning electron microscopy (SEM) analysis. The variation of mechanical loss factor (Tan ) with temperature and tensile properties of prepared samples have been studied using Dynamic Mechanical Analyzer (DMA). This study reveals that the glass transition temperature ( ), Young’s modulus, and fracture energy of the PMMA/CdS nanocomposite are greatly influenced by the existence of interfacial energetic interaction between dispersed CdS nanoparticles and the matrix of PMMA.

关键词: poly(methyl methacrylate) (PMMA)     filler nanoparticles     polymer semiconducting nanocomposite     tensile properties     glass transition temperature    

HPLC determination of glyoxal in aldehyde solution with 3-methyl-2-benzothiazolinone hydrazone

Yamei ZHU, Xiaoli YAO, Shaohui CHEN, Qun CUI, Haiyan WANG

《化学科学与工程前沿(英文)》 2011年 第5卷 第1期   页码 117-121 doi: 10.1007/s11705-010-0535-4

摘要: Based on the absorption property of a diazine that can be formed by reaction of glyoxal and 3-methyl-2-benzothiazolinone hydrazone (MBTH) in the Ultraviolet-visible (UV-vis) spectral region, a HPLC method was developed for the determination of glyoxal in acetaldehyde solution. Glyoxal was derivatised from MBTH and the derivatives (diazine) were analyzed by HPLC for identification and quantification. The determination was performed on a ZORBAX Eclipse XDB-C18 column (4.6 × 250 mm, 5 mm) at 35°C with an injection volume of 10 mL, using a mixture of acetonitrile-water solvent (99∶5, v∶v) as a mobile phase with a flow rate of 0.8 mL·min . The proper derivative reaction conditions were the temperature of 70°C, MBTH to carbonyl molar ratio of 12, and reaction time of 110 min. The glyoxal diazine was a yellow dye with a maximum molar absorptivity at 401 nm and its retention time was 5.2 min under optimal HPLC conditions. The standard curve for glyoxal had a strong linear relationship with a regression coefficient ( = 0.999) in the range of 0.002–0.020 g·L . The analysis of glyoxal in an oxidising solution gave accurate results with a relative standard deviation (RSD) value of 0.55%. The average relative recovery was 102%. This efficient HPLC technique is also proposed for detecting other dicarbonyl compounds besides glyoxal.

关键词: HPLC     glyoxal     3-methyl-2-benzothiazolinone hydrazone     diazine     dicarbonyl compounds    

Photocatalytic degradation of methyl orange using ZnO/TiO composites

Ming GE , Changsheng GUO , Xingwang ZHU , Lili MA , Wei HU , Yuqiu WANG , Zhenan HAN ,

《环境科学与工程前沿(英文)》 2009年 第3卷 第3期   页码 271-280 doi: 10.1007/s11783-009-0035-2

摘要: ZnO/TiO composites were synthesized by using the solvothermal method and ultrasonic precipitation followed by heat treatment in order to investigate their photocatalytic degradation of methyl orange (MO) in aqueous suspension under UV irradiation. The composition and surface structure of the catalyst were characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), and transmission electron microscopy (TEM). The degradation efficiencies of MO at various pH values were obtained. The highest degradation efficiencies were obtained before 30min and after 60min at pH 11.0 and pH 2.0, respectively. A sample analysis was conducted using liquid chromatography coupled with electrospray ionization ion-trap mass spectrometry. Six intermediates were found during the photocatalytic degradation process of quinonoid MO. The degradation pathway of quinonoid MO was also proposed.

关键词: photocatalytic degradation     methyl orange     ZnO/TiO2 composites     high performance liquid chromatography mass spectrometry (HPLC-MS)    

Carbon-coated Ni-Co alloy catalysts: preparation and performance for aqueous phase hydrodeoxygenation of methyl

《化学科学与工程前沿(英文)》 2022年 第16卷 第3期   页码 443-460 doi: 10.1007/s11705-021-2079-1

摘要: Carbon-coated Ni, Co and Ni-Co alloy catalysts were prepared by the carbonization of the metal doped resorcinol-formaldehyde resins synthesized by the one-pot extended Stöber method. It was found that the introduction of Co remarkably reduced the carbon microsphere size. The metallic Ni, Co, and Ni-Co alloy particles (mainly 10–12 nm) were uniformly distributed in carbon microspheres. A charge transfer from Ni to Co appeared in the Ni-Co alloy. Compared with those of metallic Ni and Co, the d-band center of the Ni-Co alloy shifted away from and toward the Fermi level, respectively. In the in-situ aqueous phase hydrodeoxygenation of methyl palmitate with methanol as the hydrogen donor at 330 °C, the decarbonylation/decarboxylation pathway dominated on all catalysts. The Ni-Co@C catalysts gave higher activity than the Ni@C and Co@C catalysts, and the yields of n-pentadecane and n-C6n-C16 reached 71.6% and 92.6%, respectively. The excellent performance of Ni-Co@C is attributed to the electronic interactions between Ni and Co and the small carbon microspheres. Due to the confinement effect of carbon, the metal particles showed high resistance to sintering under harsh hydrothermal conditions. Catalyst deactivation is due to the carbonaceous deposition, and the regeneration with CO2 recovered the catalyst reactivity.

关键词: Stöber method     carbon-coated Ni-Co alloy     in-situ hydrodeoxygenation     methyl palmitate     decarbonylation/decarboxylation    

Efficient hydrothermal deoxygenation of methyl palmitate to diesel-like hydrocarbons on carbon encapsulated

《化学科学与工程前沿(英文)》 2023年 第17卷 第2期   页码 139-155 doi: 10.1007/s11705-022-2217-4

摘要: Porous carbon-encapsulated Ni and Ni–Sn intermetallic compound catalysts were prepared by the one-pot extended Stöber method followed by carbonization and tested for in-situ hydrothermal deoxygenation of methyl palmitate with methanol as the hydrogen donor. During the catalyst preparation, Sn doping reduces the size of carbon spheres, and the formation of Ni–Sn intermetallic compounds restrain the graphitization, contributing to larger pore volume and pore diameter. Consequently, a more facile mass transfer occurs in carbon-encapsulated Ni–Sn intermetallic compound catalysts than in carbon-encapsulated Ni catalysts. During the in-situ hydrothermal deoxygenation, the synergism between Ni and Sn favors palmitic acid hydrogenation to a highly reactive hexadecanal that easily either decarbonylate to n-pentadecane or is hydrogenated to hexadecanol. At high reaction temperature, hexadecanol undergoes dehydrogenation–decarbonylation, generating n-pentadecane. Also, the C–C bond hydrolysis and methanation are suppressed on Ni–Sn intermetallic compounds, favorable for increasing the carbon yield and reducing the H2 consumption. The n-pentadecane and n-hexadecane yields reached 88.1% and 92.8% on carbon-encapsulated Ni3Sn2 intermetallic compound at 330 °C. After washing and H2 reduction, the carbon-encapsulated Ni3Sn2 intermetallic compound remains stable during three recycling cycles. This is ascribed to the carbon confinement that effectively suppresses the sintering and loss of metal particles under harsh hydrothermal conditions.

关键词: extended Stöber method     carbon encapsulated Ni–Sn intermetallic compounds     confinement     in-situ hydrothermal deoxygenation     hydrogenation     decarbonylation    

Optimization of methyl orange removal from aqueous solution by response surface methodology using spent

Liangzhi LI,Xiaolin LI,Ci YAN,Weiqiang GUO,Tianyi YANG,Jiaolong FU,Jiaoyan TANG,Cuiying HU

《环境科学与工程前沿(英文)》 2014年 第8卷 第4期   页码 496-502 doi: 10.1007/s11783-013-0578-0

摘要: The effective disposal of redundant tea waste is crucial to environmental protection and comprehensive utilization of trash resources. In this work, the removal of methyl orange (MO) from aqueous solution using spent tea leaves as the sorbent was investigated in a batch experiment. First, the effects of various parameters such as temperature, adsorption time, dose of spent tea leaves, and initial concentration of MO were investigated. Then, the response surface methodology (RSM), based on Box–Behnken design, was employed to obtain the optimum adsorption conditions. The optimal conditions could be obtained at an initial concentration of MO of 9.75 mg·L , temperature of 35.3°C, contact time of 63.8 min, and an adsorbent dosage 3.90 g·L . Under the optimized conditions, the maximal removal of MO was 58.2%. The results indicate that spent tea leaves could be used as an effective and economical adsorbent in the removal of MO from aqueous solution.

关键词: spent tea leaves     adsorption     response surface methodology     methyl orange (MO)    

Synthesis of TiO2 nano-particles and their photocatalytic activity for formaldehyde and methyl orange

XIAO Xinyan, ZHANG Huiping, CHEN Huanqin, LIAO Dongliang

《化学科学与工程前沿(英文)》 2007年 第1卷 第2期   页码 178-183 doi: 10.1007/s11705-007-0033-5

摘要: TiO nano-particles were synthesized by sol-gel technique and characterized by X-ray diffractometer (XRD) and transmission electron microscope (TEM). Their photocatalytic activities for formaldehyde (FA) and methyl orange (MO) degradation were tested using degradation rate (η) as an evaluation index. Based on the orthogonal test results, the optimal condition for TiO preparation was obtained. Results showed that particle sizes were in the range of 10 40 nm, and that prepared TiO had better photocatalytic activity than P25. A simplified model was developed to evaluate the apparent quantum efficiency (Φapp) of this photocatalytic reaction system.

关键词: prepared     photocatalytic activity     apparent     photocatalytic     orthogonal    

Methyl acetate–methanol mixture separation by extractive distillation: Economic aspects

Elena Graczová, Branislav Šulgan, Samuel Barabas, Pavol Steltenpohl

《化学科学与工程前沿(英文)》 2018年 第12卷 第4期   页码 670-682 doi: 10.1007/s11705-018-1769-9

摘要:

Methyl acetate is considered low toxicity volatile solvent produced either as a by-product during methanol carbonylation or via acetic acid esterification with methanol. In both cases, pure methyl acetate has to be isolated from the reaction mixture. Simulation of methyl acetate separation from its mixture with methanol by extraction distillation was carried out in ASPEN+ software. In total three case studies were assumed using two different extraction solvents and two solvent regeneration strategies. In case A, novel extraction solvent 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ionic liquid, was considered. Raw material separation was achieved in an extraction distillation column while the solvent regeneration was accomplished in a second distillation column in this case. In case study B, the same extraction solvent was used; however, its regeneration was carried out in a single-effect evaporator. Dimethyl sulfoxide was the second extraction solvent selected. Its use in methyl acetate-methanol separation is presented in case study C. As high purity of dimethyl sulfoxide was required for the methyl acetate-methanol azeotrope breaking, its regeneration was carried out in the second distillation column only. To simulate the ternary methyl acetate–methanol–extraction solvent mixtures separation, vapor–liquid equilibrium was predicted based on the NRTL equation. Further, unknown properties of the considered ionic liquid and variation of these properties with temperature were predicted and introduced into the ASPEN+ components properties database. Based on these data, optimum operation parameters of the respective separation equipment were established. In all case studies, the same condition had to be fulfilled, namely minimum methyl acetate content in the distillate from the extraction distillation column of 99.5mol-%. Results of simulations using the respective optimum operation parameters were employed in the economic evaluation of the three separation unit designs studied. It was found that the least energy-demanding design corresponds to the case study B in terms of both capital as well as operation expenses.

关键词: methyl acetate     1-ethyl-3-methylimidazolium trifluoromethanesulfonate     extraction distillation     dimethyl sulfoxide     economic evaluation    

Encapsulation of 2-amino-2-methyl-1-propanol with tetraethyl orthosilicate for CO2 capture

Sidra Rama, Yan Zhang, Fideline Tchuenbou-Magaia, Yulong Ding, Yongliang Li

《化学科学与工程前沿(英文)》 2019年 第13卷 第4期   页码 672-683 doi: 10.1007/s11705-019-1856-6

摘要: Carbon capture is widely recognised as an essential strategy to meet global goals for climate protection. Although various CO capture technologies including absorption, adsorption and membrane exist, they are not yet mature for post-combustion power plants mainly due to high energy penalty. Hence researchers are concentrating on developing non-aqueous solvents like ionic liquids, CO -binding organic liquids, nanoparticle hybrid materials and microencapsulated sorbents to minimize the energy consumption for carbon capture. This research aims to develop a novel and efficient approach by encapsulating sorbents to capture CO in a cold environment. The conventional emulsion technique was selected for the microcapsule formulation by using 2-amino-2-methyl-1-propanol (AMP) as the core sorbent and silicon dioxide as the shell. This paper reports the findings on the formulated microcapsules including key formulation parameters, microstructure, size distribution and thermal cycling stability. Furthermore, the effects of microcapsule quality and absorption temperature on the CO loading capacity of the microcapsules were investigated using a self-developed pressure decay method. The preliminary results have shown that the AMP microcapsules are promising to replace conventional sorbents.

关键词: carbon capture     microencapsulated sorbents     emulsion technique     low temperature adsorption and absorption    

membranes with substrate layer composed of polysulfone blended with PEG or polysulfone grafted PEG methylether methacrylate

Baicang Liu,Chen Chen,Pingju Zhao,Tong Li,Caihong Liu,Qingyuan Wang,Yongsheng Chen,John Crittenden

《化学科学与工程前沿(英文)》 2016年 第10卷 第4期   页码 562-574 doi: 10.1007/s11705-016-1588-9

摘要: To advance commercial application of forward osmosis (FO), we investigated the effects of two additives on the performance of polysulfone (PSf) based FO membranes: one is poly(ethylene glycol) (PEG), and another is PSf grafted with PEG methyl ether methacrylate (PSf-g-PEGMA). PSf blended with PEG or PSf-g-PEGMA was used to form a substrate layer, and then polyamide was formed on a support layer by interfacial polymerization. In this study, NaCl (1 mol?L ) and deionized water were used as the draw solution and the feed solution, respectively. With the increase of PEG content from 0 to 15 wt-%, FO water flux declined by 23.4% to 59.3% compared to a PSf TFC FO membrane. With the increase of PSf-g-PEGMA from 0 to 15 wt-%, the membrane flux showed almost no change at first and then declined by about 52.0% and 50.4%. The PSf with 5 wt-% PSf-g-PEGMA FO membrane showed a higher pure water flux of 8.74 L?m ?h than the commercial HTI membranes (6–8 L?m ?h ) under the FO mode. Our study suggests that hydrophobic interface is very important for the formation of polyamide, and a small amount of PSf-g-PEGMA can maintain a good condition for the formation of polyamide and reduce internal concentration polarization.

关键词: thin-film composite     forward osmosis     amphiphilic copolymer     interfacial polymerization     poly(ethylene glycol)    

Potential hybrid feedstock for biodiesel production in the tropics

Solomon GIWA,Oludaisi ADEKOMAYA,Collins NWAOKOCHA

《能源前沿(英文)》 2016年 第10卷 第3期   页码 329-336 doi: 10.1007/s11708-016-0408-8

摘要: Recently, mixture of different oils at various proportions have been used as feedstock for biodiesel production. The primary aim is to improve fuel properties which are strongly influenced by the fatty acid composition of the individual oil that makes up the feedstock mix. The tropics are renowned for abundant oil-bearing crops of which palm kernel oil (PKO) from palm seed and groundnut oil (GNO) are prominent. This present paper investigated biodiesel production from hybrid oil (HO) of PKO (medium carbon chain and highly saturated oil) and GNO (long carbon chain and highly unsaturated oil) at 50/50 (v/v) blending. The principal fatty acids (FAs) in the HO are oleic (35.62%) and lauric acids (24.23%) with 47.80% of saturated FA and 52.26% of unsaturated FA contents. The chemical conversion of the oil to methyl ester (ME) gave 86.56% yield. Fuel properties of hybrid oil methyl ester (the HOME) were determined in accordance with standard test methods and were found to comply with both ASTM D6751 and EN 14214 standards. The oxidative stability, cetane number and kinematic viscosity (KV) of HOME were observed to be improved when compared with those of GNO methyl ester from single parent oil, which could be accredited to the improved FA composition of the HO. The KV (3.69 mm /s) of HOME obtained in this paper was remarkably low compared with those reported in literature for most biodiesels. This value suggests better flow, atomization, spray and combustion of this fuel. Conclusively, the binary blend of oils can be a viable option to improve the fuel properties of biodiesel feedstock coupled with reduced cost.

关键词: groundnut oil     palm kernel oil     methyl ester     fuel properties     tropics     fatty acid composition    

Rheological behavior of PMVE-MA aqueous solution with metallic cations

Xiaoping DONG, Li LI, Jun XU, Xuhong GUO

《化学科学与工程前沿(英文)》 2011年 第5卷 第1期   页码 126-130 doi: 10.1007/s11705-010-0548-z

摘要: The rheological properties of aqueous solutions of poly(methyl vinyl ether-co-maleic anhydride) (PMVE-MA) upon addition of metallic cations at different pH values were investigated. Sol-gel transition and shear-thickening phenomena at moderate shear rate were observed upon increasing the amount of metallic cations, especially for cupric cation. At certain molar ratio ( ) of added cupric cations to carboxyl groups in PMVE-MA, the system became gel-like, and the storage modulus (G′) and loss modulus (G′′) were parallel and exhibited a power-law dependence on the frequency, which is consistent with Winter’s hypothesis of determining the gel point of a crosslinking system. The shear-thickening behavior depends on , pH, metallic valence, and temperature.

关键词: poly(methyl vinyl ether-co-maleic anhydride)     shear-thickening     gel point     rheology    

Influence of crystalline phase of Li-Al-O oxides on the activity of Wacker-type catalysts in dimethyl carbonate synthesis

Yadong GE, Yuanyuan DONG, Shengping WANG, Yujun ZHAO, Jing LV, Xinbin MA

《化学科学与工程前沿(英文)》 2012年 第6卷 第4期   页码 415-422 doi: 10.1007/s11705-012-1214-4

摘要: The catalysts supported on LiAl O (spinel) for vapor phase synthesis of dimethyl carbonate (DMC) from methyl nitrite (MN) have been studied. Their catalytic activities on supports prepared by different methods were evaluated in a continuous reactor. The samples were characterized by powder X-ray diffraction, N adsorption-desorption isotherms, fourier transform infrared spectroscopy and temperature-programmed reduction of H . Li/Al molar ratio and calcination temperature greatly influence the structure of crystalline phase of Li-Al-O oxides. Desirable LiAl O (spinel) was formed at 800°C, while LiAl O (primitive cube) formed at 900°C is undesirable for the reaction. A high Li/Al molar ratio, which was related with LiAlO , also slowed the reaction rate. The electron transfer ability and the interaction with active component are the important properties of the spinel-based supports. The CuCl -PdCl /LiAl O (spinel) with better electron transfer ability and low Pd reduction temperature exhibited a better catalytic ability.

关键词: Wacker-type catalyst     dimethyl carbonate     methyl nitrite     spinel    

标题 作者 时间 类型 操作

Polymerization of methyl methacrylate catalyzed by mono-/bis-salicylaldiminato nickel(II) complexes and

Jihong LU, Danfeng ZHANG, Qian CHEN, Buwei YU

期刊论文

Mayenite supported perovskite monoliths for catalytic combustion of methyl methacrylate

Zekai ZHANG, Zhijian KONG, Huayan LIU, Yinfei CHEN

期刊论文

Morphological and mechanical characterization of a PMMA/CdS nanocomposite

Vishal MATHUR, Manasvi DIXIT, K.S. RATHORE, N. S. SAXENA, K.B. SHARMA

期刊论文

HPLC determination of glyoxal in aldehyde solution with 3-methyl-2-benzothiazolinone hydrazone

Yamei ZHU, Xiaoli YAO, Shaohui CHEN, Qun CUI, Haiyan WANG

期刊论文

Photocatalytic degradation of methyl orange using ZnO/TiO composites

Ming GE , Changsheng GUO , Xingwang ZHU , Lili MA , Wei HU , Yuqiu WANG , Zhenan HAN ,

期刊论文

Carbon-coated Ni-Co alloy catalysts: preparation and performance for aqueous phase hydrodeoxygenation of methyl

期刊论文

Efficient hydrothermal deoxygenation of methyl palmitate to diesel-like hydrocarbons on carbon encapsulated

期刊论文

Optimization of methyl orange removal from aqueous solution by response surface methodology using spent

Liangzhi LI,Xiaolin LI,Ci YAN,Weiqiang GUO,Tianyi YANG,Jiaolong FU,Jiaoyan TANG,Cuiying HU

期刊论文

Synthesis of TiO2 nano-particles and their photocatalytic activity for formaldehyde and methyl orange

XIAO Xinyan, ZHANG Huiping, CHEN Huanqin, LIAO Dongliang

期刊论文

Methyl acetate–methanol mixture separation by extractive distillation: Economic aspects

Elena Graczová, Branislav Šulgan, Samuel Barabas, Pavol Steltenpohl

期刊论文

Encapsulation of 2-amino-2-methyl-1-propanol with tetraethyl orthosilicate for CO2 capture

Sidra Rama, Yan Zhang, Fideline Tchuenbou-Magaia, Yulong Ding, Yongliang Li

期刊论文

membranes with substrate layer composed of polysulfone blended with PEG or polysulfone grafted PEG methylether methacrylate

Baicang Liu,Chen Chen,Pingju Zhao,Tong Li,Caihong Liu,Qingyuan Wang,Yongsheng Chen,John Crittenden

期刊论文

Potential hybrid feedstock for biodiesel production in the tropics

Solomon GIWA,Oludaisi ADEKOMAYA,Collins NWAOKOCHA

期刊论文

Rheological behavior of PMVE-MA aqueous solution with metallic cations

Xiaoping DONG, Li LI, Jun XU, Xuhong GUO

期刊论文

Influence of crystalline phase of Li-Al-O oxides on the activity of Wacker-type catalysts in dimethyl carbonate synthesis

Yadong GE, Yuanyuan DONG, Shengping WANG, Yujun ZHAO, Jing LV, Xinbin MA

期刊论文